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Abstract—This paper presents a reinforcement learning (RL)
framework that utilizes Frank-Wolfe policy optimization to solve
Coding-Tree-Unit (CTU) bit allocation for Region-of-Interest
(ROI) intra-frame coding. Most previous RL-based methods
employ the single-critic design, where the rewards for distortion
minimization and rate regularization are weighted by an empir-
ically chosen hyper-parameter. Recently, the dual-critic design
is proposed to update the actor by alternating the rate and
distortion critics. However, its convergence is not guaranteed. To
address these issues, we introduce Neural Frank-Wolfe Policy Op-
timization (NFWPO) in formulating the CTU-level bit allocation
as an action-constrained RL problem. In this new framework,
we exploit a rate critic to predict a feasible set of actions. With
this feasible set, a distortion critic is invoked to update the actor
to maximize the ROI-weighted image quality subject to a rate
constraint. Experimental results produced with x265 confirm the
superiority of the proposed method to the other baselines.

Index Terms—Bit allocation, rate control, action-constrained
reinforcement learning, region-of-interest (ROI)

I. INTRODUCTION

Broadly, the task of bit allocation for intra-frame coding is
to allocate bits to coding units at certain level in such a way
that the reconstructed image quality is maximized subject to
a rate constraint. In this paper, we tackle the bit allocation
problem at the coding-tree-unit (CTU) level for intra-frame
coding with HEVC/H.265. In particular, we consider to weight
more heavily the reconstruction quality in regions of interest
(ROI). Due to the rate constraint, the ROI prioritization, as
well as coding dependencies between CTUs, this problem is
in essence a dependent decision-making process.

Reinforcement learning (RL) lends itself to dependent
decision-making. There have been several attempts at applying
RL to address bit allocation and rate control for image/video
coding. Among the prior works, the single-critic design is
most popular. Chen et al. [1] and Zhou et al. [2] learn
RL agents to determine frame-level quantization parameters
(QP) for hierarchical B-frame coding and low-delay P-frame
coding, respectively. Hu et al. [3] adopt a similar approach
for CTU-level bit allocation, in addressing intra-frame rate
control. Fu et al. [4] extend the idea to streaming applications.
Li et al. [5] focus on semantic coding for several computer
vision tasks. Ren et al. [6] tackles ROI-based coding by
learning an RL agent for both frame-level and CTU-level bit
allocation. These prior works utilize a single reward function
usually having a form of rD +λrR, where rD and rR are the
distortion and rate rewards, respectively. The design, dubbed

the single-critic method, trades off distortion minimization and
rate regularization with a fixed hyper-parameter λ. However,
it is difficult to choose a fixed λ value that can work well on
various videos and bit rates.

Deviating from the single-critic approach, Ho et al. [7] learn
two independent critics, one of which estimates rD and the
other rR. They train the RL agent by alternatively using the
distortion critic and the rate critic. Specifically, the distortion
critic is utilized to update the agent when the rate constraint is
satisfied; otherwise, the rate critic is used to train the agent to
meet the rate constraint. Though avoiding the use of a fixed λ,
the training convergence is not guaranteed for the dual-critic
method.

In this paper, we propose an action-constrained RL
framework via Neural Frank-Wolfe Policy Optimization
(NFWPO) [8], aiming for ROI-based intra-frame coding. Sim-
ilar to [7], our scheme is composed of a distortion critic and
a rate critic. However, unlike [7], we apply the rate critic in
specifying a state-dependent action feasible set. We then utilize
NFWPO together with the distortion critic to identify within
the feasible set an action that minimizes the ROI-weighted
distortion. The action thus chosen serves as a target for training
the agent. We stress that our work also differs from the vanilla
NFWPO [8] in that our action feasible set is dynamically
determined via the rate critic rather than predefined.

To the best of our knowledge, this work presents the first
attempt at applying Neural Frank-Wolfe Policy Optimization
to address bit allocation and rate control for image/video
coding. We demonstrate its effectiveness by taking as an
example CTU-level bit allocation for ROI-based intra-frame
coding. Experimental results confirm its superiority to the
single-critic and dual-critic methods.

II. NEURAL FRANK-WOLFE POLICY OPTIMIZATION

NFWPO [8] is an action-constrained RL algorithm. The
objective of the action-constrained RL is to maximize the
reward-to-go Q(s, a) subject to the feasible actions C(s):

arg max
a∈C(s)

Q(s, a), (1)

where the reward-to-go Q(s, a) is the expected cumulative
future reward under the policy π. In this paper, the policy π(s)
is implemented by a continuous, deterministic actor network.

Some prior works [9] deal with the action-constrained RL
by including a projection layer at the output of the actor
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network. The projection layer projects the action onto the
feasible set C(s) by∏

C(s)
(a) = arg min

y∈C(s)
||y − a||2, (2)

where a = π(s) is the pre-projection action and
∏

C(s)(a)
is the post-projection action. Maximizing Q(s,

∏
C(s)(a))

through gradient ascent may run into the trouble of zero
gradients. For example, consider constraining the action to
be non-negative with Rectified Linear Unit (ReLU) as the
projection layer. The zero-gradient issue occurs during back-
propagation when the action falls in the negative region.

To avoid this issue, NFWPO updates the actor network in
three consecutive steps. First, it identifies a feasible update
direction c̄(s) according to

c̄(s) = arg max
c∈C(s)

⟨c,∇aQ(s, a)|a=∏
C(s)(π(s))

⟩, (3)

where the operator ⟨a, b⟩ takes the inner product of a and b.
Second, it evaluates a reference action ãs by

ãs =
∏

C(s)
(π(s)) + α(c̄(s)−

∏
C(s)

(π(s)), (4)

where α is the learning rate of NFWPO. Lastly, it learns the
actor network π(s) through gradient decent by minimizing the
squared error between the reference action ãs and π(s):

LNFWPO = (π(s)− ãs)
2. (5)

The zero-gradient issue is circumvented during training as the
projection layer is not involved in the back-propagation.

III. PROPOSED METHOD

The objective of the CTU-level bit allocation for ROI-based
intra-frame coding is to minimize the ROI-weighted distortion
subject to a rate constraint. This is achieved by choosing
properly a quantization parameter (QP) for every CTU in an
intra-frame. In symbols, we have

arg min
{QPi}

N∑
i=1

Di(QPi) s.t.
N∑
i=1

Ri(QPi) ≤ Rf , (6)

where QPi indicates the QP for the i-th CTU, N denotes the
number of CTUs in a frame, Di(QPi) is the distortion of CTU
i encoded with QPi, Ri(QPi) is the number of encoded bits
of CTU i, and Rf is the frame-level bit budget. To achieve
ROI-based intra-frame coding, the distortions of CTUs in ROI
regions are weighted more heavily.

We formulate our task as an action-constrained RL prob-
lem. When determining QPi to encode CTU i, we view
the minimization of the cumulative distortion in Eq. (6) as
the maximization of the reward-to-go in Eq. (1). To meet
the rate constraint in Eq. (6), we limit QPi to a state-
dependent feasible set C(si), which is specified by a rate critic
(Section III-D). Eq. (6) is then transformed into

arg max
QPi∈C(si)

Q(si, QPi),∀i, (7)

which takes the same form as Eq. (1) and allows us to train
the actor with NFWPO (Section II).

Fig. 1: The proposed NFWPO-based RL framework for CTU-
level bit allocation.

TABLE I: State Definition
Components

1 Variance of the current CTU
2 Gradient of the current CTU
3 Average of variances over remaining CTUs in the frame
4 Average of gradients over remaining CTUs in the frame
5 Percentage of the outstanding bits
6 Percentage of the remaining CTUs in the frame
7 Base QP (see Section III-B)
8 Bit budget of the current frame
9 Current CTU ROI indicator
10 Percentage of remaining ROI CTUs in the frame

A. System Overview

Fig. 1 illustrates our action-constrained RL framework.
When encoding CTU i, a state si is first evaluated. Taking this
state as input, our RL agent outputs an action QPi (Section
III-B). The x265 codec then encodes CTU i with QPi. After
encoding CTU i, we evaluate a distortion reward rDi

and a
rate reward rRi

(Section III-C). These steps are repeated until
all the CTUs in a frame are encoded.

At training time, the agent interacts with x265 by encoding
every frame as an episodic task. We utilize the distortion and
rate critics to predict the distortion reward-to-go QD(s,QP )
and the rate reward-to-go QR(s,QP ), respectively. The rate
critic, which predicts the rate deviation from Rf at the end of
encoding a frame, enables us to specify a feasible set C(si)
of QPi. The distortion critic, which estimates the cumulative
distortion, guides the agent to minimize the total distortion.
That is, QD will play the role of Q in Eq. (7).

B. States and Actions

Inspired by [3], we provide our (hand-crafted) state repre-
sentation in Table I, which serves as the basis for the agent to
output the action.

The action of our RL agent indicates the QP difference (also
known as the delta QP) from the base QP. That is, the final
QP value is the sum of the delta and the base QPs (i.e. QPi =
delta QP + base QP). The base QP is designed to reduce the
search space of our agent; its value depends on the rate point.



Fig. 2: Illustration of (a) the feasible set C(s), and (b) the
reference action ãs.

C. Rewards

We specify two immediate rewards: the distortion reward
rDi and the rate reward rRi . We define rDi as

rDi
=

{
−Di · w, if CTUi is ROI;
−Di, otherwise,

(8)

where Di is the mean-squared error (MSE) of CTU i when
encoded with the QP value chosen by the agent, and w ≥ 1
is used to weight more heavily the distortions of ROI CTUs.

To construct the feasible set that addresses the rate con-
straint, the immediate rate reward rRi

is designed as

rRi
=

{
−|Rf−

∑N
t=1 Rt(QPt)|
Rf

, if i = N ;

0, otherwise.
(9)

The
∑N

i=1 rRi
represents the negative absolute deviation of

the coding bit rate from the target Rf in percentage terms.
With rDi

and rRi
, the distortion and rate reward-to-go’s

QD(s,QP ) and QR(s,QP ) in Section III-A are given by

QD(si, QPi) = E(st,QPt)∼π[
∑N

t=i
γt−irDt

] (10)

QR(si, QPi) = E(st,QPt)∼π[
∑N

t=i
γt−irRt

], (11)

where γ is the discount factor. Particularly, these reward-to-go
functions are approximated by the distortion and rate critics.

D. NFWPO-based RL for CTU-level Bit Allocation

This section presents how we use the two critic networks to
implement NFWPO. First, we identify the feasible set C(si)
for CTU i by the rate critic. To satisfy Rf , C(si) includes
the QP values QPi that the rate reward-to-go QR(si, QPi) is
greater than or equal to a threshold ϵ (see Fig. 2 (a)):

C(si) = {QPi|QR(si, QPi) ≥ ϵ}. (12)

According to Eqs. (9) and (11), C(si) contains QP values that
ensure the absolute rate deviation is capped by ϵ. Specifically,
we discretize these QP values by querying the rate critic QR

with a discrete step of 0.1 in the range of delta QP (i.e. QPi =
{base QP − 10, base QP − 9.9, ..., base QP + 10}).

Given the feasible set C(si), we follow the procedure in
Section II to generate the reference action ãs (Fig. 2 (b)). If
the actor output π(si) is outside of the feasible set, it will be
projected onto the feasible set to reach ΠC(si)(π(si)). We then

Algorithm 1 The proposed NFWPO-based RL algorithm
1: Randomly initialize critics QD(s, a|wD), QR(s, a|wR), and actor

π(s|θ) with weights wD, wR, and θ
2: Initialize target networks Q′

D(s, a|w′
D), Q′

R(s, a|w′
R), and π′(s|θ′)

with weights w′
D ←− wD, w′

R ←− wR, and θ′ ←− θ
3: Initialize replay buffer R
4: for episode = 1 to M do
5: Initialize a random noise process N for action exploration
6: Evaluate initial state s1
7: for CTU i = 1 to N in a frame do
8: Set ai = π(si|θ) +Ni

9: Encode CTU i with QP = ai
10: Evaluate the immediate rewards rDi

, rRi
and the new state si+1

11: Store transition (si, ai, rDi
, rRi

, si+1) in R
12: end for
13: Sample B transitions (sb, ab, rDb

, rRb
, sb+1) from R

14: Set yDb
= rDb

+ γQ′
D(sb+1, π

′(sb+1|θ′)|w′
D)

15: Update QD by minimizing L = 1
BΣb(yDb

−QD(sb, ab|wD))2

16: Set yRb
= rRb

+ γQ′
R(sb+1, π

′(sb+1|θ′)|w′
R)

17: Update QR by minimizing L = 1
BΣb(yRb

−QR(sb, ab|wR))2

18: for each state s ∈ B do
19: Identify the feasible set C(s) by Eq. (12)
20: Obtain c̄(s) by replacing Q with QD in Eq. (3)
21: Obtain the reference action ãs by Eq. (4)
22: Update the actor network π by Eq. (5)
23: end for
24: Update target networks Q′

D, Q′
R,and π′

25: end for

derive c̄(si) based on Eq. (3), where we replace Q(s, a) with
QD(s, a), and get ãs by Eq. (4). Finally, we update the actor
network via Eq. (5). Algorithm 1 summarizes the proposed
method.

IV. EXPERIMENTAL RESULTS

A. Settings and Training Details

We conduct our experiments using x265 under the all-intra
configuration (--keyint 1). All the sequences in our experiments
are resized to 512×320 with CTU size 64×64, resulting in 40
CTUs per frame. The experiments follow the same frame-level
bit allocation as x265. That is, we encode every sequence with
fixed QPs 22, 27, 32, and 37 to establish the frame-level bit
budget Rf , and turning on --tune psnr to optimize for PSNR.

Two datasets are used in our experiments, DAVIS 2017
TrainVal [10] and COCO 2017 validation [11], both of which
provide ground truth object masks. For training, we use 64
sequences from DAVIS, and the number and position of ROI
CTUs are sampled randomly.

At test time, we experiment with 4 settings on 3 video
test sets. We utilize the ground truth masks to specify CTU-
level ROI by defining ROI as CTUs that overlap with the
selected object mask. In Table II, the regular ROI setting is
tested on DAVIS test set (#1), which consists of 20 sequences
from DAVIS dataset with ROI specified by the ground truth
object masks, and on COCO1 (#2), formed by 1600 images
from COCO dataset with ROI given by the object masks of
randomly chosen categories. We experiment with the small
ROI and the large ROI settings on COCO2 test set (#3, 4),
respectively. The COCO2 test set is composed of 950 images
collected from COCO dataset. The small ROI setting is tested
on the selected images, where ROI corresponds to the smallest
object that covers no more than 5 CTUs. The large ROI setting
simply inverts the ROI specification of the small ROI setting.



TABLE II: Comparison of Rate Deviations (at the lowest rate point) and BD-rates in different ROI settings (x265 as anchor)

# Test Set ROI
Condition

Rate Deviation (%) BD-Rate (%) ROI Details Avg. ROI
size (CTU)single Dual Ours single Dual Ours

1 DAVIS Regular 6.39 1.57 0.96 -20.09 -15.98 -18.79 CTUs corresponding to all objects in mask 10.7
2 COCO1 Regular 19.95 4.92 3.26 -6.31 -6.53 -6.63 CTUs corresponding to randomly picked objects 15.9
3 COCO2 Small ROI 4.59 2.45 1.50 -2.92 -5.51 -7.34 CTUs corresponding to the smallest object 2.5
4 Large ROI 48.59 6.92 5.91 6.42 6.47 5.21 Inversion of Small ROI 37.5

To train the actor and critic networks, we choose α = 0.05
in Eq. (4), the ROI weighting parameter w = 10 in Eq. (8), the
learning rate to be 0.001, and the 3-step temporal difference
method. The base QPs are set to QPl − 3, where QPl are
22, 27, 32, and 37. The delta QP ranges from -10 to 10. The
threshold ϵ in Eq. (12) is set to −0.05, allowing for a maximum
rate deviation of ±5%. For a fair comparison, the same rate
tolerance is applied to the single- and dual-critic methods.

B. Rate-distortion Performance and Rate Deviations
Table II presents BD-rates (in terms of PSNR-YUV where

the Y,U,V distortions are weighted in proportional to 6:1:1)
and rate deviations, with x265 serving as anchor. In particular,
the ROI-weighted MSE is evaluated according to

ROI-Weighted MSE =
MSEROI × 10 + MSENROI

NROI × 10 +NNROI
, (13)

where MSEROI and NROI are the sum of MSEs and the number
of ROI CTUs, respectively; MSENROI and NNROI are those
of non-ROI CTUs. When reporting the average absolute rate
deviations from the frame-level bit budget Rf , any deviation
within ±5% of the Rf is regarded as 0% to reflect our ±5%
tolerance.

From Table II, we see that our scheme achieves the smallest
rate deviation under all the ROI settings, compared with the
single-critic [3] and dual-critic [7] methods. In contrast, the
rate deviation of the single-critic method is seen to be as
high as 50% under the Large ROI setting. This is attributed
to the use of a fixed λ for combining the distortion and the
rate rewards (rD + λrR). In the present case, the cumulative
distortion reward may change drastically with the number of
ROI CTUs (cp. Eq. (8)). This makes it difficult to identify a
fixed λ that can work well under various ROI settings. We
observe that the policy learned by the single-critic method [3]
achieves the best test result only when the number of ROI
CTUs is close to the training average (i.e. 20) and the test
sequences share similar characteristics to the training data
(i.e. DAVIS). When tested with large ROI, the single-critic
method chooses too low a QP for ROI CTUs, leading to large
rate overshooting (see #2, 4); in the other extreme with small
ROI, it assigns too high a QP to non-ROI CTUs, resulting
in poor rate-distortion performance (#3). In terms of BD-rate
performance, our method outperforms the single-critic [3] and
the dual-critic [7] methods in most of the settings. Even though
the single-critic method shows slightly better BD-rate results
in setting #1 (where the ROI setting and sequences are more
similar to those used for training), it exhibits poor performance
in the other settings (e.g. #3, 4), which underlines its poor
generalization performance. In comparison, our method shows
more consistent results across different settings.

Fig. 3: Subjective quality comparison with ROI highlighted.

Fig. 4: Visualization of QP assignment.

Fig. 3 further presents a subjective quality comparison. As
compared to the other methods, ours preserves more texture
details in ROI and shows less blocking artifacts. Fig. 4 visu-
alizes the corresponding QP assignment. Our method assigns
lower QPs in ROI CTUs, which is in stark contrast to x265.
One thing to note is that both the dual-critic method and ours
choose a low QP for the last non-ROI CTU. This is resulted
from the higher QPs assigned to previous CTUs. To meet the
rate constraint, a lower QP is chosen for the last CTU.

V. CONCLUSION

This paper introduces a NFWPO-based RL framework for
ROI-based intra-frame coding with HEVC/H.265. It over-
comes the empirical choice of the hyper-parameter in the
single-critic method and the convergence issue of the dual-
critic method. It outperforms these two baselines, demonstrat-
ing better ability to generalize to various ROI settings.
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